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High-pressure and -temperature techniques represent an
alternative approach to the synthesis of-bpnded carbon
nitride in analogy to the synthesis of diamotidindeed, recent
theoretical studies have suggested that ultrahard carbon nitride
phases with spcarbon bonding should exhibit greater stability
at high pressurél®12 However, it is not known whether the
kinetic barriers to the formation of a%ponded carbon nitride
phase can be overcome at temperatures below the point that a
sp-bonded precursor decomposes into carbon apd Sluch
decomposition has been observed in previous wWotk?

High-pressure and -temperature techniques are commonlyalthough the temperaturgpressure decomposition boundaries

used to probe dense and hard solid phagedthough their use

needed for rational synthesis have not been determined. Early

in the synthesis of potentially ultrahard carbon nitride materials studies of hexamethylenetetramine and diphenylamine at 2000
has been relatively unexplored. Herein, we report the first °C and 15 GPa led to the production of black, graphitic solids

mapping of the pressurgemperature-composition diagram for

a prototypical spbonded amorphous carbon nitride material.

Experiments were carried out using pistaylinder and mul-

that apparently arose from decomposition and nitrogen?tbss.
More recently, paracyanogen ;) heated at 728C and 0.3
GPa was found to decompose completely into carbon and

tianvil presses at pressures up to 20 GPa and temperatures upnolecular nitrogert® and tetracyanoethylene {€4) was also

to 2000°C. These studies demonstrate that the carbon nitride reported to lose nitrogen upon reaction at 0.3, 5, and 16’GPa.
material undergoes an irreversible decomposition into carbon In addition, shock wave processing of carbaritrogen poly-

and molecular nitrogen at a well-defined temperature that mers at peak pressures in excess of 60 GPa and at high peak

increases monotonically with pressure: 58&0at 3 GPa to 750

temperatures yielded only diamond (and presumably molecular

°C at 20 GPa. The kinetic and thermodynamic implications of nitrogen)? This latter very high pressure study highlights the
these results to a potential high-pressure synthesis of carborneed to map the pressurgemperature decomposition line of

nitride solids containing Spoonded carbon are discussed.
There is currently significant experimental and theo-

carbon nitrides if a spbonded phase is to be achieved.
We have systematically mapped the composition of the proto-

reticaf®12 interest in the synthesis and properties of carbon typical carbon nitride precursor material paracyanogen (pCN)
nitride materials due in part to the early prediction that a solid as a function of pressure and temperature. pCN represents an

with the 8-SisN4 structure 5-C3N4 would have a hardness
comparable to diamord. To date, the majority of experimental
studies have centered on low-pressure film grotth.While

ideal model since it (1) can be prepared in pure form and large
guantities, (2) has a composition close to that expected for the
hypothetical GN4 phase, and (3) has 3@ bonding typical of

these studies have led to syntheses of carbon nitride materialsarbon nitride materials studied previously!® pCN was pre-

with a wide range of compositions, including a well-defined
C:N phase with some diamond-like propertféthe local C
bonding in all materials evaluated is predominantly that is
typical of low-density, graphitic structurés.The uniform
tetrahedral, shC bonding expected for puygCsN, or other

pared by the pyrolysis of Hg(CM)n sealed quartz tubes at
460 °C for 24 h1920 Rutherford backscattering spectroscopy
demonstrated that the C:N ratio in the product was 1:1 and that
there was<0.02 atomic % mercury contamination. High-pres-
sure and -temperature studies of this pCN precursor material

high-density phases has not yet been achieved in low-pressurevere performed in a Boyd and England type piston cylinder

studies.
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apparatus (3 GPa) and a Walker type multianvil press-@iD
GPa) using procedures described previoédly The composi-
tion of samples reacted at specific pressttemperature condi-
tions was measured using an electron microprobe (Cameca
MBX).

Seven distinct samples were pressurized to 3 GPa and then
annealed fo 3 h at400, 500, 550, 600, 650, 700, or 80C.
The nitrogen composition of these samples determined by
microprobe was 50, 50, 47, 22, 12, 7, andt92 atomic %,
respectively. The large loss of nitrogen above 360ndicates
that this temperature represents the upper stability point for pCN
at 3 GPa. Above this temperature gas release was evident when
the sample capsules were opened, and furthermore, the remain-
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Figure 2. Stability phase diagram for pCN. Circles correspond to
the center sample temperature in individual experimental r@a)$CN
samples that did not decompos®) (samples that decomposed in the
central (hot) region. Because there is a temperature gradient across
the samples (Figure 1), the decomposition region could be mapped from
experiments carried out to the right of this region. Dotted boxes around
points at 16-20 GPa correspond to regions where the composition was
mapped using the estimated thermal gradient. The dashed line
ing carbon phase had an open structure with pore sizesm. corresponds to the graphite/diamond phase boundary.
Analysis of the recovered sample mass from the experiment
performed at 650C (1.6 mg, final; 3.8 mg, starting) shows
that at least 77% of the carbon remained after decomposition.
These observations are consistent with release of primagily N
upon pCN decomposition. Loss of,Ns consistent with
previous experiments carried out at 0.3 GPa and 7G6@°
although the stability decomposition point was not determine
in this latter work. It is also important to note that some of the
nitrogen detected by the microprobe in samples annealed abov
the decomposition temperature is likely to be trappedjas??
and this (trapped Y must be considered in any analysis of
structure and/or decomposition kinetics at high pressures.

We have also characterized the decomposition temperatur
of pCN at significantly higher pressures using the multianvil

press. In most experiments, thermal shielding was omitted 10 4e06mposition line has a positive slope (i.e., the barrier4o N
establish a thermal gradient across the sample and therebyelimination is increasing with pressuf). Hence, higher

d_etelrmlnrtlez tt;‘e deqon"lnpo_smon p(?]lntffor a g|\|/en presISlére ”IOa pressures and temperatures may lead to a successfal sp
single run An optical micrograph of a sample annealed at 10 5nsformation with the following caveats: (1) well-controlled

dG'Pta Wtith a celnter t_emperaturetotjG‘gD exhri]bits B’VO ogticallz_ temperatures, which are accessible through resistive or furnace
istinct sample regions separated by a sharp boundary ( Igureneating, are required to avoid precursor decomposition and (2)

1). The nitrogen composition in regions closest to the (cooler) «,mhasition analyses of microcrystalline phases are essential
ends is 50%, while immediately across the boundary in the to avoid misassignment of products

optically distinct regipn the compositi_o_n drops to 15% nitrogen. addition, the identification of crystalline graphite in the
The large drop in nitrogen composition across this boundary yecomposition products is significant since it occurs in a region
shows that there is a relatively well-defined decomposition point ¢ 1o carbon phase diagram where diamond is stable. This
for pCN and that this precursor does not gradually lose nitrogen qpqeryation further supports our suggestion that kinetics domi-
with increasing temperature. The data from these experiments, i« aven at the high-pressure and -temperature conditions of

is summarized in Figure 2. _ ourexperiments. The pCN precursor, wit# sprbon bonding,

In general, our results show that the pCN decomposition clearly favors the formation of &gybridized carbon in graphite
temperature increases with increasing pressure; for 10.0, 15-7(despite being thermodynamically unfavored) versus that®f sp
and 20.0 GPa these temperatures are 575, 700, ane78D  hybridized carbon of diamond. Interestingly, high-pressure and
°C, respectively. Within the region of this quasi phase diagram _temperature studies (15 GPa and 20WD) of fused ring
(Figure 2) where pCN is stable, we find that the density increases gromatics also found that graphite products were favored over
from 1.6 g/cn at ambient pressure to 2.1 g/at 10-20 GPa.  diamond!4 These observations suggest that simply going to
Because the observed maximum density is close to that of higher pressure and temperature with pCN-like precursors may
graphite (2.25 g/cf) and much lower than diamond (3.51 ot be the best approach to*dnded carbon nitride. Hence,
glen?), itis likely that the carbon in pCN retains®pybridiza- e believe that it will be important to explore other precursors
tion at pressures at least up to 20 GPa. Preliminary X-ray that minimize the barrier to formation of ¥parbon in carbon
diffraction studies of our samples show that at pressures up tonjtrides. This may be achieved by using a material with a
10 GPa the pCN remains amorphous and decomposes to amjgnificant amount of spcarbon in the precursor, such as found
amorphous carbon. At 15 GPa and above, however, weakin carbon nitride films grown by pulsed laser ablatisre
crystal diffraction was observed from the 50% nitrogen piRase.  Ajternatively, it may be possible, as in high-pressure diamond
Above the decomposition lineP(= 15 GPa), we detected  gynthesis, to exploit a catalydtto lower the barrier to the
formation of sg-bonded carbon nitride.

Femperitore (°C7) (T

Figure 1. Optical micrograph of a pCN sample annebfeh at 10GPa.

microcrystalline graphite as a carbon produtt(3.32 A (002),
2.08 A (101), 1.67 A (004), and 1.22 A (110)).

There are several important implications of these results. This
work demonstrates that there is a well-defined decomposition
line for the prototypical carbon nitride precursor pCN. Sig-
d nificantly, this line falls at moderate temperatures up to the 20
GPa pressures examined. For these pressures, it is apparent
éhat the barrier leading toNormation is lower than the carbon
Sp? to sp transformation essential for conversion to ultrahard
carbon nitride. The formation of Nis a local event with a
large thermodynamic driving force and is expected to be
essentially irreversible. Hence, we believe that kinetics are
Slikely to play a dominant role in the synthesis ofdmnded
carbon nitrides. In this regard it is encouraging that the
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